

Animal slurry and vinasse management continuum

Greenhouse gas (GHG) emissions from livestock manure

- The rationale for considering manure a significant source of methane (CH₄) and nitrous oxide (N_2O)
- Manure management and GHG emission
- Driving variables, interactions with climate
- Effects of management: Exemplified by anaerobic digestion and separation

Methane and nitrous oxide

Contribution to net global warming (anthropogenic) from:

- Methane 30%
- Nitrous oxide 10%

(IPCC, 2007)

Livestock contributes:

- 37% of global CH₄ emission
- 65% of global N₂O emission

(FAO 2006, Livestock long shadow)

Greenhouse gas emission from livestock production

Manure management continuum

Transformation of organic material -> TAN, CH_{4} , CO_2 etc.

Transformation of organic material -> TAN, CH_{4} , CO_2 etc.

Transformation of organic material TAN, $->N_2O$

Nitrous oxide and methane emission models Example: Pig slurry from one pig place – 3 fatteners per year (Sommer et al., 2013)

Methane and nitrous oxide

Environmental preconditions:

- Methane (CH₄): anaerobic environment
- Nitrous oxide (N₂O): a mosaic of aerobic and anaerobic sites

Climate warming effect of methane and nitrous oxide (IPCC 2013):

- 1 kg CH_4 equals effect of 34 kg CO2
- 1 kg N₂O equals effect of 298 kg CO₂

Example: Calculating CH₄ emissions from a Spanish pig barn

Effect of reducing storage time in the barn from 14 d to 1 d (time until transfer to outside store)

Climate and excretion from pig production

Manure management Reduce in-house slurry storage in Spain

14 d

1 d

N₂O emission model Liquid of waste is partly absorbed by the soil

Ammoniacal N after 24 h:

Retention of liquid declines with volatile solids concentration:

$$f_R = 1 - (1 + aVS)^{-1}$$

a = 0.063 + 1.33exp(77.8\u03c6)

 f_R is fraction retained VS is volatile solids μ is soil water potential

N₂O emission model Assumptions

- VS_d and TAN is soluble = mobile VS_{nd} is particulate = immobile
- Three main sources of N₂O:
 Slurry clumps (oxygen limited)
 - Nitrification (N_{cl})
 - Denitrification (D_{cl})

Bulk soil (well-aerated)

- Nitrification (N_s)

 Degradable VS is a main driver of denitrification, together with oxygen supply from the soil

Two compartments:

- wet "hotspots
- bulk soil

N₂O emission model Balance between O₂ supply controls emission potential

O₂ demand: > manure VS composition > slurry redistribution

O₂ supply:

> texture

> compaction

> moisture

After biogas treatment of biowaste

Including biogas treatment in the manure management continuum and methane emission calculations

Farming systems with and without anaerobic digestion (AD) producing biogas

Effects of AD on methane (CH_4) and nitrous oxide (N_2O) emissions

Effects of AD on methane (CH_4) and nitrous oxide (N_2O) emissions

Effect of reducing degradable VS on N₂O emissions after field application **Untreated slurry Fermented slurry** -digestible **Non-digestible** Digestible Digestible Transformed to CH₄ Non D - VS Non D - VS $\mathbf{D} - \mathbf{VS}$ $\mathbf{D} - \mathbf{VS}$ N_2O N_2O

GHG emission - effects of anaerobic digestion of livestock slurry

The effect of separating slurry

Manure management: Four cases

- 1. Traditional system Baseline
- 2. Traditional system Daily removal of slurry from animal house

GHG emissions and change in soil carbon Baseline and reduced inhouse slurry storage

				Reduced	
				in-house	
			Baseline	storage	
			Mg CO ₂ -eq year ⁻¹		
House	Slurry	CH_4	30	4.5	
Store	Slurry/liquid	CH_4	36	39.6	
Field	Slurry/liquid	N_2O	60.7	88.8	
Soil	Sequestration	С	-28.4	-31.8	
	Total		98.2	100.9	

- 1. Traditional system Baseline
- 2. Separatton + Daily removal of slurry

Separation frequent emptying

GHG emissions, energy and change in soil carbon Baseline and separation

			Baseline S	Separation	
			Mg CO ₂ .eq year		
			20		
House	Slurry	CH_4	30	4.5	
Store	Slurry/liquid	CH_4	36	19.4	
Field	Slurry/liquid	N_2O	60.7	50.4	
Store	Fibre	CH_4	0	8.8	
Store	Fibre	N_2O	0	4.7	
Field	Fibre	N_2O	0	1	
Energy	Consumption		0	2.8	
Coal	Substitution		0	0	
Soil	Sequestration	С	-28.4	-33.5	
Net emission			98.3	58.1	

- 1. Traditional system Baseline daily removal
- 3. Separation & incineration Daily removal

GHG emissions, energy, change in soil carbon Baseline and separation

				Separation	
			Baseline	incineration	
			Mg CO ₂ .eq year ^{.1}		
House	Slurry	CH_4	30		4,5
Store	Slurry/liquid	CH_4	36		19,4
Field	Slurry/liquid	N_2O	60,7		50,4
Store	Fibre	CH_4	0		0
Store	Fibre	N_2O	0		0
Field	Fibre	N_2O	0		0
Energy	Consumption		0		2,8
Coal	Substitution		0		-29,1
Soil	Sequestration	С	-28,4		-11,7
Net emission			98,3		36,3

GHG balance per dairy cow

Conclusion, potential reductions

- Reducing emissions at one stage in slurry mangagement chain may increase emissions downstream (separation)
- Combining treatments can give positive interactions (synergy) with significant overall reduction in GHG emission
- Manure can be a significant energy source
- There is a potential for reducing GHG emission by fermenting livestock slurry
- The reduction in N₂O emissions highly dependent on soil conditions
- Potential for synergistic effects when combining better manure management with AD

