Ammonia volatilisation from livestock slurries and mineral fertilizers

THE REPORT OF THE

Sven G. Sommer Technical Faculty, University of Southern Denmark

Nitrogen, Phosphorus and Oxygen NPO-decade

(Overgård 1982; Sommer 1982)

- Nitrate bomb
- Blue babies
- NPO was the front runner of the Action Plan for the Aquatic
- Environment I to III (APAE-I-III, Vandmiljøhandlingsplaner).

Ammonium in rainwater

(Sommer, 1984 & 2013). Idea for this work was provided by Eivind Hansen, Head of Centre for Terrestrial Ecology

- Acidification and eutrophication of natural ecosystems
- Airborne particulates that is a zard

Example of EU regulations the Gothenborg protocol deals with ammonia

Ammonia emission - processes

From:

- Stored slurry
- Slurry applied in the field
- Mineral fertilizer in the field

They have the release and emission processes in common

 $NH_3(aq) =$

TAN(aq)

 $\overline{1 + (H_3O)^+/K}_N$ (Temp)

 $[TAN] = [NH_4^+(aq)] + [NH_3(aq)]$

Understanding the system, slurry applied onto soil

 $NH_4^+(aq) + H_2O(l) \rightleftharpoons NH_3(aq) \uparrow + H_3O^+(aq)$

Slurry applied onto soil

(Sherlock, Sommer, Khan, Wood, Guertal, Freney, Dawson and Cameron, 2002; Sommer, Olesen and Christensen, 1991)

The pH buffer system of animal slurry and anaerobic digested slurry (*Sommer and Husted, 1995*)

Pig slurry

 $NH_4^+(aq) + H_2O(l) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$ $HCO_3^-(aq) + H_3O^+(aq) \rightleftharpoons CO_2(aq) + 2H_2O(l)$ $R - COOH(aq) + H_2O(l) \leftrightarrows RCOO^-(aq) + H_3O^+(aq)$

Electric charge of organic matter - particles (Sommer and Husted, 1995)

TAL: Total Alkalinity is the amount of equivalents of hydrons $(H^+(aq))$ that has to be added to the biomass to reduce pH to 4.5.

The negative charged particles may explain the low emissions after 24-48 h – i.e. only 15-20% of the TAN is lost.

Organic matter (Dry matter) in slurry may also reduce infiltration of slurry liquid containing TAN (Sommer and Olesen, 1991)

Dry matter (DM) is an indicator of reduced liquid infiltration (Thygesen, Triolo and Sommer, 2012)

NH₃ volatiliasation vs. infiltration (Sommer and Jacobsen, 1999)

Empirical emission model

(Sherlock, Freney, Bacon and van der Weerden, 1995; Sommer, Søgaard, Møller and Morsing, 2001)

Atmosphere
Stagnant air interfacial layer
Stagnant liquid surface layer

$$NH_3(g)$$

 $H_3(g)$
 $H_3(g)$

 $F = K \times u \times (\mathrm{NH}_{3,\mathrm{G}} - \mathrm{NH}_{3,\mathrm{A}})$

- Wind (u) speed at 1 m above source
- *K* dependent on surface characteristic (Here bare soil)
- Air temperature
- TAN and pH in source surface

$$\left[\mathrm{NH}_{3,\mathrm{G}}\right] = \frac{1}{H} \cdot \frac{\left[\mathrm{TAN}(\mathrm{aq})\right]}{1 + \left[\mathrm{H}_{3}\mathrm{O}^{+}\right]/\mathrm{K}_{\mathrm{N}}}$$

Atmospheric transfer model (Olesen and Sommer, 1993) $F_{A} = \frac{1}{R_{a} + R_{b} + R_{c}} \cdot ([NH_{3,G}] - [NH_{3,a}])$ R_a Turbulent air resistance $NH_3(g)$ R_h Laminar air layer resistance Atmosphere R_c Surface layer resistance Stagnant air interfacial layer $NH_3(g)$

 $NH_4^+(aq) + H_2O(l) \rightleftharpoons NH_3(aq) \uparrow + H_3O^+(aq)$

 $R_a(\mathbf{x}, \mathbf{t}) = \frac{\ln(\frac{l}{\mathbf{z}_0})}{\kappa \cdot \mathbf{u}^{(t)}}$ $R_h = 6.2 \cdot u_*^{-0.67}$

Stagnant liquid surface layer

l: height of the internal boundary layer z_o: roughness length of the surface U_* : friction velocity

R_c : measured resistance

Atmospheric emission model (Olesen and Sommer, 1993)

- R_a=18 s m⁻¹; at 8 m s⁻¹
- $R_a = 71 \text{ s m}^{-1}$; at 2 m s⁻¹
- R_b = 9 s m⁻¹; at 8 m s⁻¹ R_b =22 s m⁻¹; at 2 m s⁻¹
 - R_c = 10 230 s m⁻¹;

 R_c Manure store Uncovered: R_c = 18 s m⁻¹; Surface crust: R_c =118 s m⁻¹

R_c Fertilizer or manure in field Bare soil vs. high plants: $R_c = 10 - 230$ s m⁻¹

Micrometeorological transfer model slurry store (Sommer, Sibbesen, Nielsen, Schjørring and Olesen, 1996)

Data

Initial bulk TAN and pH Hourly climate data, air temperature and wind speed Diffusion/convection transport of TAN in slurry

Rc set to =0

Assumed that effect of distance from slurry surface to rim of the tank may improve model performance?

Trail hose application of slurry

(Thorman, Hansen, Misselbrook and Sommer, 2008)

Effect of increasing infiltration – harrowing the soil before slurry application (Sommer and Ersbøll, 1994)

Direct injection of slurry applied in field

(Hansen, Sommer and Madsen, 2003)

Acidification of slurry

(Kai, Pedersen, Jensen, Hansen and Sommer, 2008)

Factors affecting ammonia loss – The ALFAM model (Søgaard, Sommer, Hutchings, Huijsmans, Bussink and Nicholson, 2002)

Experimental factor	Effect on NH ₃ volatilisation
Soil moisture	Wet soil 10% higher than dry soil
Air temperature	+2% per °C
Wind speed	+4% per m/sec
Slurry type	Pig slurry 14% less than cattle slurry
Dry matter content	+11% per % DM
TAN content	Positive
Manure incorp.	No incorp. 11 times higher than shallow cult. and injection

Link: WWW.ALFAM.dk

The ALFAM model – Validation

(Søgaard, Sommer, Hutchings, Huijsmans, Bussink and Nicholson, 2002)

Conclusion

- Efficient techniques to reduce emission are developed and in use
- Models estimating ammonia emission from stored and applied manure should be developed accounting for the environmental condition, manure characteristics, management and treatment
- We need to improve our understanding "source" surface pH

Perspective

 Animal production is increasing and production systems changes without adapting manure management. This lead to increased pollution – which has to be reduced by developing environmentally friendly manure management.