

# Modelling environmental consequences of waste application on agricultural land

Sander Bruun

# Life cycle assessment and Inventory factors

Inventory factors are used for environmental impact assessments such as life cycle assessments

Consists of emission factors and ressource consumption factors sequestration factors and improved productivity factors

$$k_x = \frac{E_{x,P} - E_{x,S}}{S_P}$$



#### Importance of assessment time

Assessment time becomes very important for agricultural systems



Ability to predict long-term effects becomes important



### The Daisy model





### C and N dynamics in Daisy



## Using Daisy for prediction of long-term emission

Fitting the model to short-term mineralization data





# Handling non-linearities of agricultural systems

Effect of land application of waste depends very much on fertilization status.



# Study of environmental consequences of sludge treatment options

| Abbrev.* | Name of WWTP  | Sludge Treatment                                                                                                                                                                                                               |
|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSS-DF   | Frederikssund | Dewatered secondary sludge (DSS) is sludge from an aeration basin, which after addition of polymer coagulants was dewatered using a centrifuge.                                                                                |
| DMS-ST   | Staffanstorps | Dewatered mixed sludge (DMS) is a mixture of sludge from primary sedimentation (primary sludge) and secondary treatment processes (secondary sludge), which after addition of polymer coagulant was dewatered by a centrifuge. |
| LMS-ST   | -             | Limed dewatered mixed sludge (LMS) is the mixture of DMS-ST treated with lime at the mixing ratio of 180 kg lime/kg sludge on a dry basis.                                                                                     |
| PS-AV    | Avedøre       | Primary sludge (PS) is sludge from the primary sedimentation basin                                                                                                                                                             |
| ADS-AV   | -             | Anaerobically digested sludge (ADS) is generated by anaerobic digestion (mesophilic) of primary and secondary sludge.                                                                                                          |
| DWS-AV   |               | Dewatered anaerobically digested sludge is ADS-AV, which after addition of polymer coagulants was dewatered using a centrifuge.                                                                                                |
| DWS-LN   | Lynetten      | Dewatered anaerobically digested sludge is primary and secondary sludge, which has been anaerobically digested (mesophilic) and dewatered using a centrifuge after addition of polymer coagulants.                             |
| DWS-DH   | Damhusåen     | Dewatered anaerobically digested sludge is primary and secondary sludge, which has been anaerobically digested (mesophilic) and dewatered using a centrifuge after addition of polymer coagulants.                             |



#### Fit to mineralization experiment





### Included simulations

| Precipitation regime        | Low (Germany) |              |              | Medium (Denmark) |                         |                                                                  | High (Netherland) |           |  |
|-----------------------------|---------------|--------------|--------------|------------------|-------------------------|------------------------------------------------------------------|-------------------|-----------|--|
| Soil type                   | C             | parse sand   |              | Sandy loam       |                         |                                                                  | Clay              |           |  |
| Applied fertilizer material | DSS-DF        | DMS-ST       | LMS-ST       | PS-AV AD         | S-AV DWS-AV             | DRS-AV                                                           | DWS-LN            | DWS-DH    |  |
| Sludge Appl. (mineral N)    | 0 kg 30       | kg 60 kg     | 90 kg 2      | 120 kg 150 kg    | 180 kg 210              | <g 240="" kg<="" th=""><th>270 kg 300</th><th>kg 330 kg</th></g> | 270 kg 300        | kg 330 kg |  |
| Random: Crop at             | Spring barley | Winter wheat | Winter wheat | Winter barley    | Winter oil<br>seed rape | Winter wheat                                                     | Winter wheat      | Maize     |  |
| Year $(8 \times 8 = 64)$    | Year 1960     | Year 1961    | Year 1962    | Year 1963        | Year 1964               | Year 1965                                                        | Year 1966         | Year 1967 |  |

**Figure 1** Overview of performed simulations. All combinations of each factor were simulated. The factors were 3 different precipitation regimes (low medium and high), 3 different soil types (coarse sand, sandy loam and clay). These were simulated for the 12 different sludge derived fertilizers and 12 fertilization application levels. Finally, the random effects of crop and climate in the year of application were simulated. The total number of simulations performed was 82,944.



Inventory factors for dewatered sludge





Department of Plant and Environmental Sciences

# Inventory factors for different sludge types



