
Feature pair                         Average minimum
  test error
Met coil + Thr buried    0.0174
Phe exposed + Tyr frequency    0.0175
Cys exposed + Gly frequency    0.0176
Gly frequency + Leu buried    0.0176
Cys buried + Gly frequency    0.0177
Glu frequency + Gly frequency    0.0178
Met coil + Trp strand    0.0180
Ala buried + Met coil    0.0181
Cys buried + Asn helix    0.0182
Glu coil + Met coil    0.0183
Arg helix + Thr buried    0.0183
...     ...
...     ...
Ser coil + Thr helix    0.0290

Feature pair                         Average minimum
  test error
Met coil + Thr buried    0.0164
Phe exposed + Tyr frequency    0.0165
Cys exposed + Gly frequency    0.0165
Gly frequency + Leu buried    0.0166
Cys buried + Gly frequency    0.0167
Glu frequency + Gly frequency    0.0168
Met coil + Trp strand    0.0169
Ala buried + Met coil    0.0170
Cys buried + Asn helix    0.0170
Glu coil + Met coil    0.0170
Arg helix + Thr buried    0.0172
...     ...
...     ...
Ser coil + Thr helix    0.0278

Feature pair                         Average minimum
  test error
Met coil + Thr buried    0.0196
Phe exposed + Tyr frequency    0.0197
Cys exposed + Gly frequency    0.0197
Gly frequency + Leu buried    0.0198
Cys buried + Gly frequency    0.0199
Glu frequency + Gly frequency    0.0201
Met coil + Trp strand    0.0201
Ala buried + Met coil    0.0202
Cys buried + Asn helix    0.0205
Glu coil + Met coil    0.0207
Arg helix + Thr buried    0.0208
...     ...
...     ...
Ser coil + Thr helix    0.0293

Feature pair                         Average minimum
  test error
Met coil + Thr buried    0.0186
Phe exposed + Tyr frequency    0.0187
Cys exposed + Gly frequency    0.0188
Gly frequency + Leu buried    0.0188
Cys buried + Gly frequency    0.0190
Glu frequency + Gly frequency    0.0192
Met coil + Trp strand    0.0193
Ala buried + Met coil    0.0195
Cys buried + Asn helix    0.0195
Glu coil + Met coil    0.0196
Arg helix + Thr buried    0.0196
...     ...
...     ...
Ser coil + Thr helix    0.0286

Yellow = evaluation
Blue = test
Green = training

For each feature combination
Feature ranking from 12 test performances

1: Met coil
2: Thr buried
3: Phe exposed
4: Tyr frequency
5: Cys exposed
6: Gly frequency
7: Leu buried
8: Cys buried
9: Glu frequency
10: Hydrophobic interactions
11: Sequence length
12: Asn buried
13: Hydrophobic interactions (per 100 residues)
14: Asn coil
15: Asn intermediate
16: Trp strand
17: Ala buried
18: Asn helix
19: Glu coil
20: Arg helix
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Objective
Enable prediction of enzyme melting temperature from 
amino acid sequence.

Based on a large dataset of melting temperatures (Tm) of fungal 
glycoside hydrolase (GH) enzymes, determined under identical 
conditions, we have developed Tm prediction methods for 7 GH 
families. As an example of its application, the prediction method 
was used to analyze the stability of GH enzymes found in 265 
genomes obtained from the 1000 Fungal Genome Project at JGI 
(http://jgi.doe.gov/fungi).

Melting temperature of 434
glycoside hydrolase enzymes 

Figure 1: Five-number summaries of melting temperatures distrib-
uted by glycoside hydrolase family. The reported Tm values were 
all determined under identical experimental conditions.
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Figure 2: Illustration of the artificial neural network training proce-
dure. Through two rounds of feature selection a combination of 7 
features resulting in the best test set prediction performance were 
selected. This combination was used to obtain an independent 
evaluation set performance.

Table 1: Summary of melting temperature prediction model per-
formance and a comparison against a BLAST-based model. The 
neural network model outperforms the sequence similarity-based 
model for all families.

Predicted melting temperature 
of 10.895 WT fungal GH enzymes
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Figure 3: Identified fungal glycoside hydrolase enzymes in 265 ge-
nomes from the 1000 Fungal Genome project at JGI, distributed 
across family.

Figure 4: Five-number summaries of predicted melting tempera-
tures distributed by family. The enzymes were discovered within 
265 fungal genomes obtained from the 1000 Fungal Genome 
project at JGI. The predictions were completed within 24h.
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Identified GH enzymes 
in 265 fungal genomes

Methods
Data set: Melting temperatures of 434 wild-type glycoside hydro-
lase enzymes of fungal origin were provided by Novozymes A/S. 
All enzymes were individually characterized under identical experi-
mental conditions using a thermal shift assay at pH 5. 

Molecular features: Homology models of all sequences were ob-
tained using the CPHmodels 3.2 prediction server2. The following 
features were calculated from the sequence or structure: amino 
acid frequencies, secondary structure propensities (helix, strand 
and coil), relative solvent accessibility propensities (buried, inter-
mediate and exposed) and spatial interactions (hydrophobic inter-
actions, salt bridges, main-main chain and main-side chain hydro-
gen bonds, disulphide bridges and aromatic interactions). 

Machine learning: Sequences were homology partitioned into 4 
sets sharing a maximum of 80% sequence identity between sets. 
Artificial neural networks were trained for two rounds of feature se-
lection on minimizing the error using 4-fold nested cross-validation 
(Figure 2). Final prediction performance was thus calculated from 
an independent evaluation set (Table 1). The ThermoP method is 
publicly available at http://www.cbs.dtu.dk/services/ThermoP 
(manuscript in preparation).

Results
Prediction performance: The prediction performance is summa-
rized in Table 1 in terms of the Pearson’s correlation coefficients 
(PCC) and mean absolute prediction error (MAE) for selected fami-
lies. Furthermore, a benchmark against a BLAST-based prediction 
model is shown, in which the Tm of the nearest neighbor is trans-
ferred to the query sequence.

Application on 265 fungal genomes: A translated gene cata-
logue of 13.4 mio. predicted genes from 265 genomes obtained 
from the 1000 Fungal Genome Project at JGI were searched for 
GH enzymes. From the seven families GH5, 6, 7, 10, 11, 43 and 61 
a total of 11.716 enzymes were identified from the catalogue 
(Figure 3). 

Family PCC MAE [oC] PCC MAE [oC]
GH5 0.61 6.6 0.44 8.0
GH6 0.65 4.6 0.27 6.0
GH7 0.59 5.7 0.54 6.1

Neural network (ANN) BLAST

Of the 11.716 identified GH enzymes, the melting temperature 
could be predicted for 10.895 sequences, using the ThermoP web-
server (shown below). A homology model could not be obtained for 
the remaining 821 sequences.
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Perspectives
• ThermoP: fast primary screening tool for 
   thermostable, fungal GH enzymes

• Extendable to bacterial enzymes as charac-
   terization data become available

• Applications in experimental design and large 
   scale gene selction for industrial applications

• Approach to predictive model development 
   could be used for other enzyme characteris-
   tics such as pH stability


