

USE OF A SCREW-FEEDER FOR BIOMASS FEEDING IN COMBUSTION PROCESSES IN A DTF AND COMPARISON TO THE GASEOUS EMISSIONS

Glauber Cruz^{a,*}and Paula Manoel Crnkovic^a – *glauber.cruz@usp.br ^aUniversity of São Paulo – Engineering School of São Carlos – Department of Mechanical Engineering

INTRODUCTION

> An important parameter when solid fuels are feeding in a thermochemical system is the homogeneous mass flow. The performance of the feeding mechanical conveying have been widely studied. However, several types of feeding systems are used and have shown high fluctuations of the flow mass. Therefore, such inconvenient should be reduced and studies that evaluate both the feeding system and different types of fuels need to be performed [1, 2]. For this reason, this study deals with experiments performed in a DTF (Drop Tube Furnace) using a particular feeding system specially designed by our research group.

OBJECTIVES

>This study evaluates 5 rotation velocities (30, 35, 40, 45) and 50%) of a screw-feeder, which maximum rotation is 15.0 rpm obtained by PWM (Pulse-Wide Modulation) for the biomasses feeding into a DTF.

 \succ This study also evaluates emission gases (SO₂, CO, CO₂) and NO) from the combustion process.

MATERIALS AND METHODS

combustion process in a DTF at 5 rotation velocities

EESC • USP

NETeF

samples	moisture	Hemicellulose + cellulose + residual lignin	ash
in natura	5.3 ± 0.3	89.4 ± 1.3	5.3 ± 0.4
30%	3.7 ± 0.1	89.4 ± 0.6	6.9 ± 0.5
35%	4.8 ± 0.1	83.3 ± 0.7	11.9 ± 0.1
40%	4.4 ± 0.8	81.0 ± 1.4	13.8 ± 4.9
45%	3.4 ± 0.1	77.8 ± 0.2	18.8 ± 0.1
50%	3.3 ± 0.0	72.2 ± 0.5	24.5 ± 0.1
2500 2000 - 2000 - 1500 - Bu 1000 -		6000 5000 - 4000 - (°, WN 800 - %) 3000 -	

Figure 2. (a) Tucumã's fruits, (b) tucumã seed in natura after preparation and (c) SEM image of *tucumã* seed.

A) SAMPLES PREPARATION FOR FEEDING

Washed, dried at 80 °C for 24 h, grinded and sieved. > Average particle size of \approx 460 μ m.

B) THERMAL ANALYSIS OF THE RESIDUES

- FGA/ DTG (Shimadzu TGA-50);
- > Atmosphere: synthetic air (100 mL min⁻¹);
- ➢ Heating rate: 10 °C min⁻¹ from room temperature to 700 °C;
- \succ Sample mass: (10.0 ± 0.5) mg;

C) COMBUSTION PROCESS AND GASEOUS EMISSIONS

- Drop Tube Furnace (DTF);
- Furnace temperature: 1000 °C;
- > Experimental time ± 10 minutes;
- \succ Flow mass 0.3 g min⁻¹;

 \succ Primary air flow: 1 L min⁻¹;

 \succ Gases analyzer (SICK GMS 810) - SO₉, CO, CO₉ and NO.

REFERENCES

- [1] Joppich, A. and Salman, H. **Biomass & Bioenergy**, v. 16, n. 3, p. 191-198, 1999.
- [2] Gabra *et al.* Biomass & Bioenergy, v. 15, n. 2, p. 143-153, 1998.

combustion process in a DTF under N_{2}/O_{2} (80/20) atmosphere at 5 rotation velocities.

CONCLUSIONS

FIGINATE For the residues of *tucumã* seed samples after combustion process in a DTF at 5 rotation velocities, showed that 50% of motor total rotation was the best feeding velocity, which presented high loss of moisture, residual lignocellulosic material and ash formation, indicating a good efficiency of thermal conversion system; > In the DTF, 40% was the optimal rotation velocity for the biomass feeding, which showed a more continuum and homogeneous mass flow; > Gaseous emissions for these samples under combustion atmosphere in a DTF, presented at 30% rotation velocity the lower limits for SO₂ and CO. However, for NO and CO_{$_{9}$}, 40%. The emission limits found in this study are/ in agreement with Brazilian environmental legislation.