Source: biochar.org

Conversion of sugars into ethanol: state-of-the-art and perspectives for IG ethanol

Andreas K. Gombert Associate Professor & Director of the Ph.D. program in Bioenergy Bioprocess and Metabolic Engineering Lab (LEMeB) Faculty of Food Engineering University of Campinas, Brazil gombert@unicamp.br

Source: yourweeklymicrobe.blogspot

Ist generation fuel ethanol

- From corn (USA): ~60 billion liters/year mainly composed of starch

- From sugar-cane (Brazil): ~30 billion liters/year mainly composed of sucrose

BRAZIL

- ~400 sugar-cane mills (no 2 of them are equal)
- Sugar-cane represents a bigger share (~18%) in the energy matrix than e.g. hydroelectricity (~16%)
- >40% of the energy matrix is renewable
- Producing I kJ in the form of ETH is cheaper than producing I kJ in the form of gasoline
- Flex fuel motors dominate the light vehicle fleet
- IG ETH is doing good (energy balance), but can be improved
- Brazil is introducing 2G ETH (but IG won't disappear!)
- No clear governmental policy: decreased production in the recent years, hard-time for this business!

The current Brazilian biorefinery: 3 main products

Saccharomyces cerevisiae

yourweeklymicrobe.blogspot

- =yeast (a unicellular eukaryotic microorganism)
- converts sugars into ethanol under anaerobiosis, with high yields and high final titers
- genetics, metabolism, physiology well known
- easy to genetically engineer
- robustness towards harsh industrial conditions
- simple nutritional requirements

FED BATCH FERMENTATION WITH Cell Recycle via CENTRIFUGATION

(MELLE-BOINOT System)

- The "Brazilian" process for producing ethanol from sugarcane sucrose is carried out without complete asepsis

- Yeast cells are recycled and a drastic sulfuric acid treatment is carried out at the end of every cycle
- A high inoculum fraction and a low N-content in the medium favor ethanol production
- The industrial yield (g Ethanol/g sugar) has been stable for many years now (around 91%)

Della-Bianca et al Appl Microbiol Biotechnol 2013

- "Learning by doing" is finished.

- If we want to improve 1G ethanol yields, breakthrough technologies will be required (e.g. use of metabolically engineered yeast with improved traits).

Why is <u>yield</u> so important?

 Because ~70% of the final ethanol cost is due to raw material cost

Yield = g ethanol/g sugar Productivity = g ethanol/(L.h)

yeast population dynamics during a crushing season

open fermentation vat

http://www.biocane.com.br

Basso et al, (2008) FEMS Yeast Res

How do yeasts make ethanol?

Embden-Meyerhof-Parnas (EMP) pathway

OR

classical glycolysis

Yields 2 ATP/hexose Reduces NAD⁺ to NADH + H⁺

FIGURA 14-2 As duas fases da glicólise. Para cada molécula de glicose que passa pela fase preparatória (a), duas moléculas de gliceraldeído-3-fosfato são formadas; as duas passam pela fase de compensação (b). O piruvato é o produto final da segunda fase da glicólise. Para cada molécula de glicose, dois ATPs são consumidos na fase preparatória e quatro ATPs são produzidos na fase

de compensação, dando um rendimento líquido de dois ATPs por molécula de glicose convertida em piruvato. As reações numeradas são catalisadas pelas enzimas listadas à direita e também correspondem aos títulos numerados discutidos no texto. Lembre-se que cada grupo fosforil, representado aqui como (P), possui duas cargas negativas (—PO₃²).

Ethanolic fermentation (yeast) Reoxidizes NADH + H⁺ to NAD⁺

Why do yeasts make ethanol?

It is a cell's dream to become two cells. François Jacob.

Fuel ethanol production: The conflict of interests!

$C_6H_{12}O_6 \longrightarrow 2 C_2H_6O + 2 CO_2$

- This is a redox neutral conversion.
- But...

Strategies aiming at increasing ethanol yields on sugar include:

- Decreasing glycerol and/or biomass formation
- Decreasing free-energy conservation
- Improving yeast robustness towards process stressors (e.g. high ethanol concentrations, low pH, high T, etc.)
- Improving the process (e.g. using bacteriocins or other strategies to fight contamination, thereby decreasing sugar loss)

EXAMPLE I:

Improving ethanol formation in S. cerevisiae by decreasing freeenergy conservation

Energetics of SUCROSE metabolism in Saccharomyces cerevisiae

Modulating the energetics of SUCROSE metabolism in Saccharomyces cerevisiae

Stambuk et al. INPI PI 0901254-0. (2009)

4 ATP - **1** ATP = **3** ATP for each Sucrose

Anaerobic sucrose-limited chemostat *D* = 0.10 h⁻¹

	Strains		Change	
Parameters	SUC2	i <i>SUC2</i>	Observ ed	Theore tical
Υ	0.094 ± 0.001	0.088 ± 0.001	- 6%	- 25 %
Y (g.g glc eq.	0.378 ± 0.001	0.395 ± 0.007	+ 4%	+8%
Residual sugar	0.05 (glc) 0.11 (fru) 0.00 (suc)	0.09 (glc) 0.16 (fru) 1.79 (suc)		

Low affinity for sucrose

Evolutionary Engineering: Chemostat as a tool to increase affinity

Selective pressure for an IMPROVED AFFINITY/CAPACITY for the growth-limiting substrate (sucrose)

Chemostat setup

Evolutionary Engineering (Long-term sucrose limited chemostat culture)

Anaerobic sucrose-limited chemostat $D = 0.10 \text{ h}^{-1}$

Deremeters	Strains			Change	
Parameters	SUC2	iSUC2 original	iSUC2 evolved	Observed	Theoretic al
Y _{x/s} (g.g glc eq.	0.094 ± 0.001	0.088 ± 0.001	0.066 ± 0.002	- 29 %	- 25 %
Y _{Ethanol/S} (g.g glc eq.	0.378 ± 0.001	0.395 ± 0.007	0.421 ± 0.006	+ 11 %	+9%
Residual sugars (g.l	0.05 (glc) 0.11 (fru) 0.00 (suc)	0.09 (glc) 0.16 (fru) 1.79 (suc)	< 0.01 (glc) 0.03 (fru) 0.08 (suc)		
					20

What changed? Transport capacity (Vmax)

ROLE OF AGT1

- A duplication of AGT1 was found in the evolved iSUC2 strain
- Double-deletion of AGT1 in the iSUC2 evolved strain restored the reference strain phenotype, but...
- Insertion of an additional copy of AGT1 in the reference strain did not lead to the evolved iSUC2 phenotype

Conclusion

Relocation of sucrose metabolism in yeast, by a

combination of metabolic and evolutionary

engineering, resulted in an 11 % increase in the ethanol yield on sucrose

Basso et al (2011) Metabolic Engineering 13:694

EXAMPLE 2:

Improving ethanol formation in S. cerevisiae by introducing CO₂ fixation

Guadalupe-Medina *et al. Biotechnology for Biofuels* 2013, **6**:125 http://www.biotechnologyforbiofuels.com/content/6/1/125

Biotechnology for Biofuels

RESEARCH

Open Access

Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast

Víctor Guadalupe-Medina^{1,2}, H Wouter Wisselink^{1,2}, Marijke AH Luttik^{1,2}, Erik de Hulster^{1,2}, Jean-Marc Daran^{1,2}, Jack T Pronk^{1,2} and Antonius JA van Maris^{1,2*}

Can *S. cerevisiae* be engineered to reduce CO₂ to ethanol?

Phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase (Rubisco) key enzymes in the Calvin cycle for autotrophic CO₂ fixation

Victor Guadalupe et al. (2013) Biotechnology for Biofuels – 6:125

slide kindly provided by Ton van Maris and Jack Pronk (TU Delft)

Functional expression of Rubisco and PRK in *S. cerevisiae*

Ribulose-1,5-bisphosphate-dependent fixation of ¹⁴CO₂ by cell extracts of *S. cerevisiae* strains

slide kindly provided by Ton van Maris and Jack Pronk (TU Delft)

Victor Guadalupe et al. (2013) Biotechnology for Biofuels – 6:125

Rubisco and PRK-expressing *S. cerevisiae* Product yields in anaerobic, sugar-limited chemostat cultures (D = 0.05 h⁻¹, N₂-sparged, equimolar glucose/galactose feed)

Relevant genotype	reference	cbbM, PRK, groEL/ ES
Biomass yield on sugar (g g ⁻¹	0.083 ± 0.000	0.093 ± 0.000
Glycerol yield on sugar (mol mol	0.14 ± 0.00	0.04 ± 0.00
Ethanol yield on sugar (mol mol Corrected for evaporation	1.56 ± 0.03	1.73 ± 0.01

70 % reduction of glycerol production Rubisco/PRK competes with native glycerol pathway

Victor Guadalupe et al. (2013) Biotechnology for Biofuels – 6:125

Rubisco and PRK-expressing *S. cerevisiae* Product yields in anaerobic, sugar-limited chemostat cultures (D = 0.05 h⁻¹, 10 % CO₂, equimolar glucose/galactose feed)

Relevant genotype	reference	cbbM, PRK, groEL/ ES
Biomass yield on sugar (g g ⁻¹	0.084 ± 0.000	0.095 ± 0.000
Glycerol yield on sugar (mol mol	0.12 ± 0.00	0.01 ± 0.00
Ethanol yield on sugar (mol mol Corrected for evaporation	1.56 ± 0.02	1.73 ± 0.01

> 90 % reduction of glycerol production 11 % increase of ethanol yield

Strategies aiming at increasing ethanol yields on sugar include:

- Decreasing glycerol and/or biomass formation
- Decreasing free-energy conservation
- Improving yeast robustness towards process stressors (e.g. high ethanol concentrations, low pH, high T, etc.)
- Improving the process (e.g. using bacteriocins or other strategies to fight contamination, thereby decreasing sugar loss)
- IG ethanol processes will not be substituted by 2G processes!

Thanks for your attention!

Andreas K. Gombert gombert@unicamp.br

Visit our lab's webpage:

http://www.fea.unicamp.br/leb

Visit the Ph.D. program in Bioenergy's webpage:

http://genfis40.esalq.usp.br/pg_bio/

There does not exist a category of <u>science</u> to which one can give the name applied science. There are sciences and the applications of science, bound together as the fruit of the tree which bears it. *Louis Pasteur (1822-1895).*