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Global Warming
(Global Change)

Climate change
— Climate warming

— Altered precipitation regime

Rising atmospheric CO,

Increasing ground level ozone
Nutrient eutrophication
Land use change




Modeled Greenhouse Gas Concentrations for 2000 to 2100
IPCC (2001) Climate Change 2001, Synthesis Report.
Cambridge University Press
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Global Temperature Change and Modeled Predictions:
1900 to 2100

MuLti-MopeL AveRAGES AND AssesseD RANGES FOR SurrFace WARMING

1 1 i l L N g .
] — A2 BIPCC 2007: WG1-AR4 [~
60 —— am -
— B1 -
50 — — Year 2000 Constant -
S = Concentrations -
; 4.0 — High emission |—
= 3 scenario 2
§ 3]
@ 3.0 —
= 3
o 7]
o 2.0 — »
p o 0 - [
: 45
it =
® 1.0 — »
o
e, 7]
o “ - -
0.0'=] Low emission
scenario 1
-1.0 — E ',: . 9_3 : &
T T T T T T T v B m < m < < <
1900 2000 2100

Year

Source: Intergovernmental Panel on Climate Change (2007)
Climate Change 2007: The Physical Basis. Cambridge Univ. Press



Climate Warming is Not Just an
Increase in Mean Temperature

A Schematic of How Warming Affects Climate
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Climate Change and
Photosynthesis

e Climate Warming
— Mean change
— Change in day versus night means
— Regional change, high versus low latitude
— Seasonal change, e.g. early versus mid-season
— Change in heat event frequency and magnitude
— Reduced magnitude and frequency of cold events
— Ocecurs in an environment of elevated atmospheric CO,

« Precipitation change
— Mean change
— Seasonal timing of change

— Extreme event magnitude and frequency
« Severe droughts
* Flooding



Modelled Change in Cereal Yield Assuming the A2a High

Emission Scenario, Relative to 1990 Yields
Parry et al. (2004) Global Environ. Change 14:53-67
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Yield reductions are due to increases in drought frequency and severity, and heat stress



Growth Chambers and Greenhouses




Open-Top Chambers for Field Work (1990’s)
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Terrestrial Plant Photosynthesis

* C;plants
— Use the C; photosynthetic pathway
— Suffer from photorespiration in warm environments
— Operate below CO, saturation, so CO, responsive
— Bioenergy examples: Arundo, willow, poplar, Eucalypts, Camelina

* C,Plants
— Use the C, photosynthetic CO, concentrating mechanism
— Minimal photorespiration
— Low response to rising CO,
— Examples: maize, sorghum, sugar cane, Miscanthus, Napier grass

* CAM plants
— Crassulacean Acid Metabolism to concentrate CO, around Rubisco
— stomata open at night, closed in day
— Slow growth, but very high water use efficiency
— Examples: Agave, Euphorbia, Opuntia cacti



Terrestrial Plant Bioenergy
Photosynthesis

C,; Photosynthesis C, Photosynthesis =~ CAM Photosynthesis
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THE DUAL CATALYTIC NATURE OF RUBISCO

Photorespiration C; Photosynthesis
0, CO,

RuBP RuBP
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NADPH
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PGA  oudation X et
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ATP + NADPH ATP + NADPH
Abbreviations: PG — phosphogylcolate; PGA - phosphogylcerate; RuBP - ribulose bisphosphate;

Rubisco - RuBP carboxylase/oxygenase



A Schematic of C, Photosynthesis

Sage RF, Sage TL. (2013) C, Plants. In Levin S.A. (ed.) Encyclopedia of Biodiversity, second edition, Volume 2. :
Academic Press, pp. 361-381.
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Abbreviations: PEP, phosphoenolpyruvate; PEPCase, PEP carboxylase; PPDK, pyruvate phosphate dikinase;
PVA, pyruvate; PCR, photosynthetic carbon reduction cycle.



The Effect of CO, Concentration on Rubisco Function
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The Temperature Response of C; Photosynthesis
with and without Photorespiration

Sage RF (2007) Autotrophs. In Sorgensen SE, Fath BD, eds. Encyclopedia of Ecology. Elsevier. Oxford, UK. pp. 291-300.
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Efficiency of C; and C, Photosynthesis as a Function of CO,
and Temperature

Modelled using the WIMOVAC photosynthesis program . From Sage RF (2000) In Sheehy JE, Mitchell PL, Hardy B, eds.
Redesigning Rice Photosynthesis to Increase Yield. International Rice Research Institute, Manila, The Philippines. 13-38.
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The Response of C; and C, Photosynthesis
to Intercellular CO, Concentration
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Academic Press, pp. 361-381.



Net CO, assimilation rate

The Temperature Response of C; and C, Photosynthesis at
Three Atmospheric CO, Concentrations
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The Context of the Photosynthetic Response
to Global Change Is Important

|. Geographic scale
A) Cold versus warm location
B) Dry versus wet location



An Example of How Seasons Can Affect the
Response to Climate Warming

The Temperature Response of C; Photosynthesis
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Rising CO, Reduces Stomatal Conductance

Rising CO, induces partial stomatal closure, and hence reduces
transpiration
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Soil Water Content in Response to CO, gradient

C; and C, mixed grassland Maize in the SOYFACE Facility
Polley et al. (2002) Global Change Biology 8: 1118-1129 Leakey et al. (2006) Plant Physiol. 140:779-790
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The Scale of the Photosynthetic
Response Is Important

|. Geographic location

A) Cold versus warm growth season
B) Dry versus wet climate

Il. Plant Spatial Scale
A) Cell to leaf
B) Whole plant
C) Crop canopy

Ill. Temporal Scale

A) Short term enzyme mediated response (half time of seconds)
B) Short-term regulatory response (a half time of minutes)

C) Acclimation response (long-term phenotypic response)

D) Adaptive (genotypic alteration) via natural artificial selection



Response Possibilities of Plants to Rising CO,
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Photosynthetic Acclimation to High CO, in C; Plants

Responses of photosynthesis to varying measurement CO, for plants grown at

current or elevated CO,
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Nutrient Supply Modulates Photosynthetic

Responses to Rising CO,

White Lupine (Lupinus albus) grown at two phosphorous supply rates

CO, enrichment above 200 ppm CO, does not stimulate photosynthesis if
soil phosphorous is limiting
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A Model for the CO, Acclimation Response

High Carbohydrate Levels in Plants Cause Feedback Signals
that Reduce Expression of Photosynthetic Genes

CK +
g nutrients

<= p-RNA

\CK, nutrients ABA
\ \
ABA low, ABA high
cytoklnl_ns (CK_) high, cytokinins low,
nutrients high nutrients low
Low Carbohydrate Roots High Carbohydrate Roots
(for example, at low (for example, at high atmospheric CO,)

atmospherlc COZ) Sage (2002) Comparative and Integrative Biology 42:469-480



Six Photosynthetic Lessons From
High CO, FACE Experiments

Adapted from Leakey ADB, Ainswort EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2010) Elevated CO2 efj
and water relations: six important lessons from FACE. J. Exp Botany 10: 2

1. CO, uptake is enhanced by elevated [CO,] despi

photosynthetic capacity. Median estimate are lation.

2. Nutrient deficiency reduces long ter otosynthesis.

3. The nitrogen use efficiency ed about 30% at high

CO,, leaf nitrogen decline

d canopy scales, delaying the onset
portant in warm, dry climates.

4. Water use decli
of drought. Thj

ation of photosynthesis by a doubling of growth
rimary observed when water supply is deficient.

6. Gro sponses to elevated CO, are generally less than
photosynthetic responses. This leads to excess carbon in the plant that is
stored, excreted or metabolically. disrupts the plant function. (Plants are
sink limited in elevated CO,).



Adaptation Considerations

1) Current crops are not adapted to
elevated CO, but can be via breeding
and genetic engineering.

2) Different crops varieties are adapted
to different temperature ranges.

3) Crop photosynthesis in the future will
be determined in part by crop
Improvement strategies



Some Crop Improvement
Options

* Increase Sink Capacity

» Improve Nitrogen Use efficiency In
elevated CO.;:

—In C, plants by reducing Rubisco
Investment.

—In C, plants by reducing investment in
the C, metabolic cycle.



Summary of Key Points

C; photosynthesis will respond more to rising CO,, at
elevated temperature than at cool temperature.

C, photosynthesis has a weak response to rising CO,,
above current levels, but is strongly stimulated by
warming temperatures up to near 35°C.

Climate warming will enhance photosynthesis in cool
settings, but in warm settings could push leaves above
their thermal optimum.

Human improvement of crops will influence the eventual
photosynthetic response to global climate change in
bioenergy production systems.
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