

Biofuels beyond ethanol

Dr. Mislav Oreb

Goethe University, Frankfurt, Germany

Lecture overview

Introduction

Why do we need alternatives to ethanol (and biodiesel)?

Physicochemical parameters of biofuels

- Metabolic engineering for biofuel production
- Example isobutanol
- Summary/Outlook

Requirements for advanced biofuels – the drop-in concept

- high energy density (energy per mass [MJoule/kg] or volume [MJoule/L])
- low hygroscopicity (to prevent corrosion; compatibility with current infrastructure and engines)
- miscibility with conventional fuels
- acceptable energy per CO₂ ratio

Physicochemical properties of fuels

Biofuel	Specific energy [MJ/kg]	Energy density [MJ/L]	Hygroscopicity	Energy/CO2 [MJ/kg]
Gasoline	45 - 48.3	32 - 34.8	no	13.64-14.64
Diesel	48.1	40.3	no	14.15
Jet fuel	46	37.4	no	n.i.
Ethanol	23.4 – 26.8	18.4 - 21.2	yes	12.25-14.03
Butanol	36.6	29.2	no	15.16
Biodiesel	37.8	33.3 - 35.7	no	13.26

http://en.wikipedia.org/wiki/Energy_content_of_biofuel

A current alternative to Diesel: 1st generation Biodiesel

• fatty acid-ethanol or -methanol esters (FAEE or FAME)

Production of 1st generation Biodiesel

Herstellung von Biodiesel

www.ufop.de

Biodiesel has a low energy yield per hectare

	Liters per hectare* (1)	MJ per hectare** (2)	KWh per hectare (3)	KWh per sq m (4)
Ethanol from				
Corn ¹	3,730	89,517	24,886	2.489
Corn ²	3,003	72,063	20,033	2.003
Corn stover ¹	1,544	37,051	10,300	1.030
Miscanthus ¹	6,945	166,676	46,336	4.634
Switchgrass ¹	2,009	48,208	13,402	1.340
Sugar cane ²	6,744	161,861	44,997	4.500
Biodiesel ³				
Oil palm	4,752	156,810	43,593	4.359
Coconut	2,151	70,997	19,737	1.974
Rapeseed	954	31,485	8,753	0.875
Peanut	842	27,781	7,723	0.772
Sunflower	767	25,312	7,037	0.704
Soybean	524	17,286	4,806	0.481

Table 2.1 The annual energy output of various biofuels

Nelson in "Handbook of Bioenergy, Economics and Policy", Springer (2010)

Biodiesel has a low energy yield per hectare

 Table 2.1
 The annual energy output of various biofuels

2	Liters per	MJ per	KWh per	KWh per sq	
Alternatives f	or both e	thanol and	biodiese	el are need	ed
Corn ¹ Corn ² Corn stover ¹ <i>Miscanthus</i> ¹ Switchgrass ¹ Sugar cape ²	3,730 3,003 1,544 6,945 2,009 6,744	89,517 72,063 37,051 166,676 48,208 161,861	24,886 20,033 10,300 46,336 13,402 44,997	2.489 2.003 1.030 4.634 1.340 4.500	
Biodiesel ³ Oil palm Coconut Rapeseed Peanut Sunflower Soybean	4,752 2,151 954 842 767 524	156,810 70,997 31,485 27,781 25,312 17,286	43,593 19,737 8,753 7,723 7,037 4,806	4.359 1.974 0.875 0.772 0.704 0.481	Ne Ecc

Nelson in "Handbook of Bioenergy, Economics and Policy", Springer (2010)

Advanced biofuels that can be obtained by metabolic engineering of microbes

	Compound (Examples)	Chemical classification	Subsitutes for
ОН	Isobutanol	Higher alcohols	Gasoline
	Nonane, Tridecane	Alkanes/Alkenes	Gasoline
	Farnesene, Amorphadiene	Isoprenoids	Jet Fuel, Diesel

Properties of isobutanol

- high energy density (98% of gasoline)
- •less miscible with water
- far less corrosive
- can be distributed through existing infrastructure
- can replace fossil fuels up to 100%
- can be blended with diesel
- can be used as a building block for other compounds, e.g. PTA >plastics

Principles of metabolic engineering

- exploring nature's emzyme repertoire
- thermodynamic constraints/driving forces
- redox cofactor balance
- rational enzyme engineering
- cellular compartmentalization (eukaryotes)

2-ketoacid derivatives

Isobutanol as a product of valine metabolism

Protein engineering for metabolic engineering

negative charges of the phosphate group of NADPH are stabilised via electrostatical interactions by highly conserved arginine and serine residues

Redox balanced pathway using engineered KARI

Yeast is a desirable host for biofuel production

- The main ethanol producer
- Good tolerance to alcohols and toxic by-products in lignocellulosic hydrolysates
- Acid-tolerant (important in lignocellulosic hydrolysates)
- Not susceptible to phages

...but more complicated (compartments!)

Idea: Expressing the complete pathway in the cytosol

Deletion of N-terminal targeting sequences

Principles of mitochondrial protein import

Bioinfrmatic prediction of mt. Targeting sequences

Truncated proteins are cytosolic

Brat et al. (2012)

Are they also functional?

Als, kari, dhad triple deletion strain

Brat et al. (2012)

Are they also functional?

Brat et al. (2012)

Isobutanol production by the cytosolic pathway is superior to the split pathway

0,65 g/L, 15 mg isoutanol per g Glucose, Brat et al., 2012

Current work / future prospect

Summary

- Isobutanol (and other higher alcohols) have higher energy density and lower hygroscopicity than ethanol
- Isobutanol can be synthesized from the 2-ketoacid ketoisovalerate
- To produce isobutanol from sugars, valine biosynthesis and Ehrlich pathway must be short-circuited
- In E. coli, 100% of the theoretical yield could be reached
- ME of yeast is more challenging due to compartmentalization, but promising results could be obtained
- Industrial production of isobutanol is entering the commercial phase

Acknowledgements

Prof. Eckhard Boles Group leader

Wesley Cardoso Generoso PhD student

