São Paulo Advanced School on the Present and Future of Bioenergy – ESPCA 2014

## Perspectives for an Integrated 1G+2G Biorefinery



Division of Integrated Assessment of Biorefineries Brazilian Bioethanol Science and Technology Laboratory - CTBE Brazilian Center for Research in Energy and Materials - CNPEM



October 2014





#### Introduction **Alternatives for 2G Technology** Integrated x Standalone? Fermentation Straw or biodigestion **Recovery**? of C5? Virtual In-house Sugarcane Feedstock? production of **Biorefinery** enzymes? (VSB)





### **Virtual Sugarcane Biorefinery**







## **Virtual Sugarcane Biorefinery**



- Assess different routes and technologies
- Assess stage of development of new technologies
- Optimize concepts and operations in the Biorefinery



Process simulation Mathematical models

#### **Sustainability impacts:**

economic, environmental and social





### CanaSoft

#### Scenarios Description

- Agricultural operations
- Transport
- Inputs
- Irrigation
- General aspects

Economic, Environmental and Social Results



100%

80%

60%

40%

20%

0%

Manual









## **Biorefinery Simulation**







## **Ethanol production**







## **Ethanol Distribution System**







#### **Decision-making:**

- 1 Internal Rate of Return (% per year)
- 2 Ethanol production cost (R\$/L)

3 Minimum ethanol selling price (MESP, R\$/L)





<sup>1</sup> Internal Rate of Return (IRR)





Minimally Acceptable Rate of Return (M.A.R.R)







<sup>2</sup> Ethanol production cost (R\$/L)

IRR = 0 → Price = Production cost It doesn't pay the cost of capital

**Public policy goal:** 

minimizingProduction cost





<sup>3</sup> Minimum ethanol selling price (R\$/L)

| IRR | = | MARR | $\longrightarrow$ |
|-----|---|------|-------------------|
|     |   |      |                   |

Minimum selling price (MESP)

It pays the cost of capital at the minimum acceptable rate of return

Public policy goal:

minimizing MESP





| <u>T</u>                     | <u>echnology</u> | 1        | Technology 2 | <u>2</u>             |
|------------------------------|------------------|----------|--------------|----------------------|
| Revenues (\$)                | 260              | N        | 300          |                      |
| OPEX (\$)                    | 185              |          | 210          |                      |
| CAPEX (\$)                   | 490              |          | 620          | Decision making:     |
|                              |                  | decrease |              | Business side:       |
| IRR <sub>1</sub>             | 15%              |          | 14%          | not satisfied        |
|                              |                  |          |              |                      |
|                              |                  | decrease |              | Policymaker side:    |
| Production cost <sub>1</sub> | 0.79             |          | 0.78         | satisfied            |
|                              |                  | increase |              | Business and policy: |
| MESP <sub>1</sub>            | 0.95             |          | 0.96         | not satisfied        |
|                              |                  |          |              |                      |





#### Life Cycle Assessment







### **Straw Recovery**

#### **Existing mechanization**



#### Straw recovery systems







(reduction and traffic control)

#### Integral harvesting

- Advantages: reduced losses during harvest- possibility of separation of sugarcane tops.
- **Disadvantages:** reduction of truck load density - investment in dry cleaning station.



#### Baling

Advantages: - better economics for long distances.

Disadvantages: - additional mechanized operations

- higher mineral impurities
- cost and destination of wires.





## Straw Recovery Systems economic assessment







### Straw Recovery Systems economic assessment







# Integrated 1G2G ethanol production







## Why integrate 2G to 1G plant?

- Feedstock available in the plant (bagasse) or close to it (straw)
- Share part of the infrastructure of 1G plant
  - concentration, fermentation, distillation, storage and cogeneration
- Dilution of potential fermentation inhibitors present in hydrolyzed liquor when mixed to 1G juice
- Increase of thermal integration possibilities when considering overall 1G2G process
- Improvement of C5 and C6 fermentations adding C12
- Increase of flexibility for CHP operation





### **Process flow diagram**







#### **1G parameters**

| Parameters                                                        | Value    |
|-------------------------------------------------------------------|----------|
| Plant capacity – sugarcane processed (million tonnes/year)        | 2.0      |
| Efficiency – sugar extraction in the mills (%)                    | 96       |
| <ul> <li>– fermentation (%) – annexed/autonomous plant</li> </ul> | 90       |
| – boiler 90 bar (LHV basis) (%)                                   | 87       |
| LHV – bagasse (50% moisture)/straw (15% moisture) (MJ/kg)         | 7.5/14.9 |
| Energy demand of the process – electricity (kWh/TC)               | 30       |
| Steam – process/molecular sieves – pressure (bar)                 | 2.5 / 6  |
| – molecular sieves (kg/L EtOH)                                    | 0.6      |
| Anhydrous ethanol purity (wt%)                                    | 99.6     |





#### **2G parameters**

| Parameter                                       | Value |
|-------------------------------------------------|-------|
| Steam explosion – hemicellulose conversion (%)  | 70    |
| – cellulose conversion (%)                      | 2     |
| Enzymatic hydrolysis – cellulose conversion (%) | 70    |
| – solids loading                                | 15    |
| – reaction time                                 | 48h   |
| Fermentation – C6 conversion (%)                | 90    |
| – C5 conversion (%)                             | 80    |





### **Integrated 1G2G - convergence**



Iterative calculation until **generated energy = process demand** 





### **1G Investment**

#### **Base case plant:**

- 2,000,000 TC/year
- 22 bar boiler
- Azeotropic distillation

#### **Autonomous distillery**:

Total investment R\$ 300 million (~US\$150 million) – Dedini (2010)/Sousa and Macedo (2010)

#### **Transmission lines – electricity credit**

- Costs (R\$/km): R\$ 480,000/km
- Length: 40 km
- R\$ 19.2 million for transmission lines

Technological improvements (optimized 1G):

- + 40 % on distillation sector (molecular sieves)
- + 40 % on cogeneration sector (90 bar boilers)
- ✓ + 10% on distillation sector (heat exchanger network)





### **2G Investment**

#### 2G plant

Additional investment: US\$ 76 million – 462,451<sup>(1)</sup> t bagasse/year

(US\$ 327/t dry bagasse)

Investment calculation as a function of equipment capacity (steam flow, bagasse processed on hydrolysis, biogas produced, etc):

$$Cost_{2} = Cost_{1} \left( \frac{Capacity_{2}}{Capacity_{1}} \right)^{0.6}$$

## **Enzyme Costs**

US\$ 0.05/L cellulosic ethanol





## **Technical Results**



Dias et al., 2012. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology





### **Economic Assessment**



Dias et al., 2012. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology





## **Environmental Impacts**







#### Flexibility ethanol 2G vs electricity



Source: Dias et al., 2013. Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy





# Thank you! antonio.bonomi@bioetanol.org.br