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•   Assess different routes and technologies

•   Assess stage of development of new technologies

•   Optimize concepts and operations in the Biorefinery

Model 

Virtual Sugarcane Biorefinery

Sustainability impacts: 

economic, environmental and social

Model 
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Process simulation

Mathematical models
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Biorefinery Simulation
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Internal Rate of Return (% per year)1

Decision-making:

Financial analysis

Ethanol production cost (R$/L)2

Minimum ethanol selling price (MESP, R$/L)3



Internal Rate of Return (IRR)1

25 years0 1 2 3 ...

IRR is the interest 

rate at which

Net Present Value 0

Revenues - OPEX

Financial analysis

25 years0 1 2 3 ...Net Present Value 

is zero

IRR < MARR

Minimally Acceptable Rate of Return (M.A.R.R)

NPV =

IRR > MARR NPV = +

Business goal:

maximizing IRR

0

CAPEX NPV = 0

-



Ethanol production cost (R$/L)2

IRR = 0 Price = Production cost 

It doesn’t pay the cost of capital

Financial analysis

It doesn’t pay the cost of capital

Public policy goal:

minimizing 

Production cost



IRR = MARR Minimum selling price 

(MESP)

Minimum ethanol selling price (R$/L)3

Financial analysis

(MESP)
It pays the cost of capital at 

the minimum acceptable rate 

of returnPublic policy goal:

minimizing  

MESP



Revenues ($)

OPEX ($)

CAPEX ($)

300

210

620

Technology 2

260

185

490 Decision making: 

Technology 1

Financial analysis

CAPEX ($)

IRR1
15%

0.96MESP1
0.95

Production cost1
0.79

14%

0.78

Business side:

not satisfied

Policymaker side:

satisfied

Business and policy:

not satisfied

decrease

decrease

increase

Decision making: 



Agricultural production
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Straw Recovery

(reduction  and  traffic  control)

Proposed mechanization Existing mechanization

Straw recovery systems

Integral harvesting

Advantages: - reduced losses during harvest

- possibility of separation of sugarcane tops.

Disadvantages:  - reduction of truck load density

- investment in dry cleaning station.

Baling 

Advantages: - better economics for long distances.

Disadvantages: - additional mechanized operations

- higher mineral impurities

- cost and destination of wires. 

Straw recovery systems
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Integrated 1G2G ethanol production 



• Feedstock available in the plant (bagasse) or close to it (straw)

• Share part of the infrastructure of 1G plant

– concentration, fermentation, distillation, storage and cogeneration

• Dilution of potential fermentation inhibitors present in

Why integrate 2G to 1G plant?

• Dilution of potential fermentation inhibitors present in

hydrolyzed liquor when mixed to 1G juice

• Increase of thermal integration possibilities when considering

overall 1G2G process

• Improvement of C5 and C6 fermentations adding C12

• Increase of flexibility for CHP operation



Process flow diagram
Ethanol production

1G optimized configuration

• Straw use (50%)

• Molecular sieves for dehydration

• 90 bar boilers

• 20% reduction on steam demand

2G configuration

• Steam explosion pretreatment

• Hydrolysis: 48h,  15% solids

• C5 use: fermentation to ethanol

• Use of solid residues as fuel in the   

boilers



1G parameters

Parameters Value

Plant capacity – sugarcane processed (million tonnes/year) 2.0

Efficiency – sugar extraction in the mills (%) 96

– fermentation (%) – annexed/autonomous plant 90

– boiler 90 bar (LHV basis) (%) 87– boiler 90 bar (LHV basis) (%) 87

LHV – bagasse (50% moisture)/straw (15% moisture) (MJ/kg) 7.5/14.9

Energy demand of the process – electricity (kWh/TC) 30

Steam – process/molecular sieves – pressure (bar) 2.5 / 6

– molecular sieves (kg/L EtOH) 0.6

Anhydrous ethanol purity (wt%) 99.6



2G parameters

Parameter Value

Steam explosion   – hemicellulose conversion (%) 70

– cellulose conversion (%) 2

Enzymatic hydrolysis – cellulose conversion (%) 70Enzymatic hydrolysis – cellulose conversion (%) 70

– solids loading 15

– reaction time 48h

Fermentation – C6 conversion (%) 90

– C5 conversion (%) 80



Integrated 1G2G - convergence
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Base case plant:

� 2,000,000 TC/year

� 22 bar boiler

� Azeotropic distillation

Autonomous distillery:  

Total investment R$ 300 million (~US$150 million) – Dedini (2010)/Sousa and Macedo

1G Investment

Technological improvements (optimized 

1G):

� + 40 % on distillation sector 

(molecular sieves)

� + 40 % on cogeneration sector (90 bar 

boilers)

� + 10% on distillation sector (heat 

exchanger network)

Total investment R$ 300 million (~US$150 million) – Dedini (2010)/Sousa and Macedo

(2010)

Transmission lines – electricity credit

� Costs (R$/km): R$ 480,000/km

� Length: 40 km

� R$ 19.2 million for transmission lines



2G plant

� Additional investment: US$ 76 million – 462,451(1) t bagasse/year

(US$ 327/t dry bagasse)

Investment calculation as a function of equipment capacity (steam 

flow, bagasse processed on hydrolysis, biogas produced, etc):

2G Investment 

(1) Bioetanol combustível: uma oportunidade para o Brasil, CGEE, 2009
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Capacity
CostCost

flow, bagasse processed on hydrolysis, biogas produced, etc):

Enzyme Costs

� US$ 0.05/L cellulosic ethanol



Technical Results

82

116

173

81

Ethanol (L/TC) Electricity (kWh/TC)

1G2G or

1G+2G
1G (optimized)

82 81

Dias et al., 2012. Integrated versus stand-alone second generation ethanol production from 

sugarcane bagasse and trash. Bioresource Technology



16.8%

Economic Assessment

14.9%

0.37 $/L 12.7% 0.36 $/L
0.33 $/L

Integrated 1G2G

0.37 $/L

Ethanol costIRR

1G+2G

12.7% 0.36 $/L

1G (optimized)

Dias et al., 2012. Integrated versus stand-alone second generation ethanol production from 

sugarcane bagasse and trash. Bioresource Technology



Environmental Impacts

1G ethanol 1G2G ethanol

0.39

0.47

0.42

Eutrophication
KgPO4

-3
eq/kgethanol

Energy 

Balance
Renew out/fossil in

Global Warming 

Potential 
KgCO2eq/kgethanol

10.6

0.39

0.35

0.42

11.8



Flexibility ethanol 2G vs electricity
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Source: Dias et al., 2013. Biorefineries for the production of first and second generation ethanol 

and electricity from sugarcane. Applied Energy
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